Telegram Group & Telegram Channel
🖥 Skorch позволяет использовать модели PyTorch с интерфейсом, аналогичным scikit-learn (Sklearn). Это делает обучение и валидацию PyTorch-моделей проще и понятнее, особенно для тех, кто уже знаком с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модели на PyTorch
lr=0.001, # Скорость обучения
batch_size=64, # Размер батча
criterion=nn.CrossEntropyLoss, # Функция потерь
optimizer=optim.Adam # Оптимизатор
)


Здесь создаётся обёртка NeuralNetClassifier, которая делает модель PyTorch совместимой с .fit(), .predict() и другими методами Sklearn.

📌Обучение:


model.fit(X_train, y_train)
Ты обучаешь модель так же, как и в Sklearn. Это удобно и не требует написания собственного цикла обучения.


С помощью Skorch ты получаешь:

- удобный Sklearn-подобный API для PyTorch-моделей;

- автоматический вывод метрик обучения;

- лёгкую интеграцию с GridSearchCV, Pipeline и другими инструментами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1793
Create:
Last Update:

🖥 Skorch позволяет использовать модели PyTorch с интерфейсом, аналогичным scikit-learn (Sklearn). Это делает обучение и валидацию PyTorch-моделей проще и понятнее, особенно для тех, кто уже знаком с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модели на PyTorch
lr=0.001, # Скорость обучения
batch_size=64, # Размер батча
criterion=nn.CrossEntropyLoss, # Функция потерь
optimizer=optim.Adam # Оптимизатор
)


Здесь создаётся обёртка NeuralNetClassifier, которая делает модель PyTorch совместимой с .fit(), .predict() и другими методами Sklearn.

📌Обучение:


model.fit(X_train, y_train)
Ты обучаешь модель так же, как и в Sklearn. Это удобно и не требует написания собственного цикла обучения.


С помощью Skorch ты получаешь:

- удобный Sklearn-подобный API для PyTorch-моделей;

- автоматический вывод метрик обучения;

- лёгкую интеграцию с GridSearchCV, Pipeline и другими инструментами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1793

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Machine learning Interview from ms


Telegram Machine learning Interview
FROM USA